
# N43 - Electrochemistry

# **Cell Potential**

Link to YouTube Presentation: <a href="https://youtu.be/iqk4Li9toOQ">https://youtu.be/iqk4Li9toOQ</a>

# **N43 - Electrochemistry** Cell Potential

**Target:** I can calculate the cell potential using standard reduction values.



 $Zn(s) | ZnSO_4(aq) || CuSO_4(aq) | Cu(s)$ 

## **Mnemonics**

### LEO goes GER Loss of Electrons is Oxidation Gain of Electrons is Reduction



### OIL RIG Oxidation is Loss of Electrons Reduction is Gain of Electrons



# **A Few More Electrochemistry Terms**

#### Anode

The electrode where oxidation occurs



#### Cathode

The electrode where reduction occurs



Reduction at the Cathode

## **Cell Potential**

**Cell Potential - The difference in potential energy between** the anode and the cathode in a voltaic cell

Depends on how easy one substance is reduced at the cathode and how easy the other is oxidized at the anode.

Standard emf, *E*°<sub>cell</sub> = Cell potential @ standard conditions (25 °C, 1 atm for gases, 1 M concentration of solution) – You add the cell potentials for each half reaction

# **Standard Reduction Potential**

- We cannot measure the absolute tendency of a half-reaction, we can only measure it <u>relative</u> to another half-reaction.
- We select as a standard half-reaction the reduction of H<sup>+</sup> to H<sub>2</sub> under standard conditions, which we assign a potential difference = 0 v. (An arbitrary choice!)

Standard hydrogen electrode, SHE  $2H^+ + 2e^- \rightarrow H_2(g)$ 



## **Half-Cell Potentials**

- SHE reduction potential is defined to be exactly 0 V.
- Standard reduction potentials compare the tendency for a particular reduction half-reaction to occur relative to the reduction of H<sup>+</sup> to H<sub>2</sub>.
  Under standard conditions
- Half-reactions with a stronger tendency toward oxidation than the SHE have a negative value for *E*°<sub>red</sub>
- Half-reactions with a stronger tendency toward reduction than the SHE have a positive value for E°<sub>red</sub>
- For an oxidation half-reaction,  $E^{\circ}_{oxidation} = -E^{\circ}_{reduction}$

# **Reduction Values**

More + means more easily reduced

If you need to flip a rxn, make sure to flip the sign on E.

If you multiply a rxn, do *NOT* multiply E. It is a "state function" and does not change based on quantity!!!!

| eduction Half-             | Reaction                                                                     |                                                                             | E°(V)  |                          |
|----------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|--------------------------|
|                            | $F_2(g) + 2 e^-$                                                             | → 2 F <sup>-</sup> (aq)                                                     | 2.87   |                          |
| Stronger<br>cidizing agent | $H_2O_2(aq) + 2 H^+(aq) + 2 e^-$                                             | → 2 H <sub>2</sub> 0( <i>l</i> )                                            | 1.78   | Weaker<br>reducing agent |
|                            | $PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$                               |                                                                             | 1.69   |                          |
|                            | $MnO_4^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$                                      | $\longrightarrow$ MnO <sub>2</sub> (s) + 2 H <sub>2</sub> O(l)              | 1.68   |                          |
|                            | MnO <sub>4</sub> <sup>-(aq)</sup> + 8 H <sup>+</sup> (aq) + 5 e <sup>-</sup> | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 4 H <sub>2</sub> O(I)             | 1.51   |                          |
|                            | $Au^{3+}(aq) + 3 e^{-}$                                                      | → Au(s)                                                                     | 1.50   |                          |
|                            | $PbO_2(s) + 4 H^+(aq) + 2 e^-$                                               | $\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$                                   | 1.46   |                          |
|                            | $Cl_2(g) + 2 e^-$                                                            | $\longrightarrow$ 2 CI <sup>-</sup> (aq)                                    | 1.36   |                          |
|                            | $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$                                      | $\longrightarrow$ 2 Cr <sup>3+</sup> (aq) + 7 H <sub>2</sub> O( <i>I</i> )  | 1.33   |                          |
|                            | $O_2(g) + 4 H^+(aq) + 4 e^-$                                                 | → 2 H <sub>2</sub> O( <i>l</i> )                                            | 1.23   |                          |
|                            | $MnO_2(s) + 4 H^+(aq) + 2 e^-$                                               | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 2 H <sub>2</sub> O( $l$ )         | 1.21   |                          |
|                            | 103-(ad) + 6 H+(ad) + 2 e-                                                   | $\longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(l)$                            | 1.20   |                          |
|                            | Br <sub>2</sub> ( <i>l</i> ) + 2 e <sup>-</sup>                              | $\rightarrow$ 2 Br <sup>-</sup> (aq)                                        | 1.09   | -                        |
|                            | $VO_2^+(aq) + 2 H^+(aq) + e^-$                                               | $\longrightarrow VO^{2+}(aq) + H_2O(l)$                                     | 1.00   |                          |
|                            | $NO_3^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$                                       | $\longrightarrow$ NO(g) + 2 H <sub>2</sub> O(l)                             | 0.96   | -                        |
|                            | $ClO_2(g) + e^-$                                                             | $\longrightarrow ClO_2^{-}(aq)$                                             | 0.95   | -                        |
| 1                          | $Ag^+(aq) + e^-$                                                             | $\longrightarrow Ag(s)$                                                     | 0.80   |                          |
|                            | $Fe^{3+}(aq) + e^{-}$                                                        | $\longrightarrow$ Fe <sup>2+</sup> (aq)                                     | 0.77   |                          |
| 8                          | $O_2(g) + 2 H^+(aq) + 2 e^-$                                                 | $\longrightarrow$ H <sub>2</sub> O <sub>2</sub> (aq)                        | 0.70   | -                        |
|                            | $MnO_4^{-}(aq) + e^{-}$                                                      | $\longrightarrow$ MnO <sub>4</sub> <sup>2-</sup> (aq)                       | 0.56   | -                        |
|                            | $l_{2}(s) + 2e^{-1}$                                                         | → 2 [ (aq)                                                                  | 0.54   | -                        |
| 8                          | $Cu^{+}(aq) + e^{-}$                                                         | $\longrightarrow$ Cu(s)                                                     | 0.52   | -                        |
|                            | $O_2(g) + 2 H_2O(l) + 4 e^-$                                                 | $\rightarrow$ 4 OH <sup>-</sup> (aq)                                        | 0.40   | -                        |
|                            | $Cu^{2+}(aq) + 2e^{-}$                                                       | → Cu(s)                                                                     | 0.34   |                          |
|                            | $SO_4^{2^-}(aq) + 4 H^+(aq) + 2 e^-$                                         | $\longrightarrow$ H <sub>2</sub> SO <sub>3</sub> (aq) + H <sub>2</sub> O(l) | 0.20   |                          |
|                            | $Cu^{2+}(aq) + e^{-}$                                                        | $\longrightarrow$ Cu <sup>+</sup> (aq)                                      | 0.16   |                          |
|                            | Sn <sup>4+</sup> (ag) + 2 e <sup>-</sup>                                     | $\longrightarrow$ Sn <sup>2+</sup> (ag)                                     | 0.15   |                          |
| 1                          | 2 H <sup>+</sup> (aq) + 2 e <sup>-</sup>                                     | $\longrightarrow$ H <sub>2</sub> (g)                                        | 0      |                          |
|                            | $Fe^{3+}(aq) + 3e^{-}$                                                       | $\longrightarrow$ Fe(s)                                                     | -0.036 |                          |
|                            | $Pb^{2+}(aq) + 2e^{-}$                                                       | → Pb(s)                                                                     | -0.13  |                          |
|                            | $Sn^{2+}(aq) + 2e^{-}$                                                       | $\rightarrow$ Sn(s)                                                         | -0.14  |                          |
|                            | $Ni^{2+}(aq) + 2e^{-}$                                                       | $\rightarrow$ Ni(s)                                                         | -0.23  |                          |
| 1                          | $Cd^{2+}(aq) + 2e^{-}$                                                       | $\longrightarrow$ Cd(s)                                                     | -0.40  |                          |
| 2                          | $Fe^{2+}(aq) + 2e^{-}$                                                       | $\rightarrow$ Fe(s)                                                         | -0.45  |                          |
|                            | $Cr^{3+}(aq) + e^{-}$                                                        | $\rightarrow$ Cr <sup>2+</sup> (ag)                                         | -0.50  |                          |
| 8                          | $Cr^{3+}(aq) + 3e^{-}$                                                       | $\rightarrow$ Cr(s)                                                         | -0.73  |                          |
|                            | $Zn^{2+}(aq) + 2e^{-}$                                                       | $\rightarrow$ Zn(s)                                                         | -0.76  |                          |
| 1                          | 2 H <sub>2</sub> O(/) + 2 e <sup>-</sup>                                     | $\longrightarrow$ H <sub>2</sub> (g) + 2 OH <sup>-</sup> (aq)               | -0.83  |                          |
| 8                          | $Mn^{2+}(aq) + 2e^{-}$                                                       | $\longrightarrow$ Mn(s)                                                     | -1.18  |                          |
| -                          | $Al^{3+}(aq) + 3e^{-}$                                                       | $\rightarrow$ Al(s)                                                         | -1.66  |                          |
|                            | $Mg^{2+}(aq) + 2e^{-}$                                                       | $\longrightarrow$ Mg(s)                                                     | -2.37  |                          |
|                            | $Na^+(aq) + e^-$                                                             | $\rightarrow$ Na(s)                                                         | -2.71  |                          |
| 1                          | $Ca^{2+}(aq) + 2e^{-}$                                                       | $\rightarrow$ Ca(s)                                                         | -2.76  |                          |
| 8                          | $Ba^{2+}(aq) + 2e^{-}$                                                       | $\longrightarrow$ Ba(s)                                                     | -2.70  | -                        |
| Marken                     | $K^+(aq) + e^-$                                                              | $\longrightarrow$ K(s)                                                      | -2.90  | - C/                     |
| Weaker                     | к ( <i>aq</i> ) + e<br>Ц <sup>+</sup> ( <i>aq</i> ) + e <sup>-</sup>         | $\rightarrow$ Li(s)                                                         | -2.92  | Stronger<br>reducing age |

# **Reduction Table**

More + means more easily reduced

# More NIO More <u>Megative</u> Is <u>O</u>xidation

# More PER More Positive Is Reduction

| Reduction Half-             | Reaction                                                                                      |                                                                             | E°(V)  |                          |
|-----------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|--------------------------|
| 6<br>18                     | $F_2(g) + 2 e^-$                                                                              | → 2 F <sup>-</sup> (aq)                                                     | 2.87   |                          |
| Stronger<br>oxidizing agent | $H_2O_2(aq) + 2 H^+(aq) + 2 e^-$                                                              | $\longrightarrow 2 H_2O(l)$                                                 | 1.78   | Weaker<br>reducing agent |
| oxidizing agent             | $PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$                                                | $\longrightarrow$ PbSO <sub>4</sub> (s) + 2 H <sub>2</sub> O( <i>l</i> )    | 1.69   | reducing agent           |
|                             | $MnO_4^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$                                                       | $\longrightarrow$ MnO <sub>2</sub> (s) + 2 H <sub>2</sub> O(l)              | 1.68   |                          |
|                             | $MnO_4^{-}(aq) + 8 H^{+}(aq) + 5 e^{-}$                                                       | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 4 H <sub>2</sub> O(l)             | 1.51   |                          |
|                             | Au <sup>3+</sup> (aq) + 3 e <sup>-</sup>                                                      | → Au(s)                                                                     | 1.50   |                          |
|                             | $PbO_2(s) + 4 H^+(aq) + 2 e^-$                                                                | $\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$                                   | 1.46   |                          |
|                             | Cl <sub>2</sub> (g) + 2 e <sup>-</sup>                                                        | → 2 CF(aq)                                                                  | 1.36   |                          |
|                             | Cr <sub>2</sub> 0 <sub>7</sub> <sup>2-</sup> (aq) + 14 H <sup>+</sup> (aq) + 6 e <sup>-</sup> | $\longrightarrow$ 2 Cr <sup>3+</sup> (aq) + 7 H <sub>2</sub> O(l)           | 1.33   |                          |
|                             | $O_2(g) + 4 H^+(aq) + 4 e^-$                                                                  | → 2 H <sub>2</sub> O( <i>l</i> )                                            | 1.23   |                          |
|                             | $MnO_2(s) + 4 H^+(aq) + 2 e^-$                                                                | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 2 H <sub>2</sub> O(I)             | 1.21   |                          |
|                             | 103 <sup>-(aq)</sup> + 6 H <sup>+</sup> (aq) + 5 e <sup>-</sup>                               | $\longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(l)$                            | 1.20   |                          |
|                             | Br <sub>2</sub> ( <i>I</i> ) + 2 e <sup>-</sup>                                               | > 2 Br <sup>−</sup> (aq)                                                    | 1.09   | -                        |
|                             | $VO_2^+(aq) + 2 H^+(aq) + e^-$                                                                | $\longrightarrow VO^{2+}(aq) + H_2O(l)$                                     | 1.00   |                          |
|                             | $NO_3^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$                                                        | $\longrightarrow$ NO(g) + 2 H <sub>2</sub> O( $l$ )                         | 0.96   |                          |
|                             | $ClO_2(g) + e^-$                                                                              | $\longrightarrow ClO_2^{-}(aq)$                                             | 0.95   | -                        |
|                             | $Ag^+(aq) + e^-$                                                                              | $\longrightarrow$ Ag(s)                                                     | 0.80   |                          |
|                             | Fe <sup>3+</sup> (aq) + e <sup>-</sup>                                                        | $\longrightarrow$ Fe <sup>2+</sup> (aq)                                     | 0.77   | _                        |
|                             | 0 <sub>2</sub> (g) + 2 H <sup>+</sup> (aq) + 2 e <sup>-</sup>                                 | $\longrightarrow$ H <sub>2</sub> O <sub>2</sub> (aq)                        | 0.70   |                          |
|                             | $MnO_4^{-}(aq) + e^{-}$                                                                       | $\longrightarrow$ MnO <sub>4</sub> <sup>2-</sup> (aq)                       | 0.56   |                          |
|                             | l <sub>2</sub> (s) + 2 e <sup>-</sup>                                                         | > 2 I <sup>−</sup> (aq)                                                     | 0.54   |                          |
|                             | $Cu^+(aq) + e^-$                                                                              | $\longrightarrow$ Cu(s)                                                     | 0.52   |                          |
|                             | $O_2(g) + 2 H_2O(l) + 4 e^-$                                                                  | $\longrightarrow$ 4 OH <sup>-</sup> (aq)                                    | 0.40   |                          |
|                             | Cu <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | → Cu(s)                                                                     | 0.34   | _                        |
|                             | $SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$                                                           | $\longrightarrow$ H <sub>2</sub> SO <sub>3</sub> (aq) + H <sub>2</sub> O(l) | 0.20   |                          |
|                             | $Cu^{2+}(aq) + e^{-}$                                                                         | $\longrightarrow$ Cu <sup>+</sup> (aq)                                      | 0.16   |                          |
|                             | Sn <sup>4+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Sn <sup>2+</sup> (aq)                                     | 0.15   | _                        |
|                             | 2 H <sup>+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ H <sub>2</sub> (g)                                        | 0      |                          |
|                             | $Fe^{3+}(aq) + 3 e^{-}$                                                                       | $\longrightarrow$ Fe(s)                                                     | -0.036 |                          |
|                             | $Pb^{2+}(aq) + 2 e^{-}$                                                                       | $\longrightarrow$ Pb(s)                                                     | -0.13  | _                        |
|                             | Sn <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Sn(s)                                                     | -0.14  |                          |
|                             | Ni <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Ni(s)                                                     | -0.23  |                          |
|                             | Cd <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Cd(s)                                                     | -0.40  | _                        |
|                             | Fe <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | → Fe(s)                                                                     | -0.45  |                          |
|                             | Cr <sup>3+</sup> (aq) + e <sup>-</sup>                                                        | $\longrightarrow$ Cr <sup>2+</sup> (aq)                                     | -0.50  |                          |
|                             | Cr <sup>3+</sup> (aq) + 3 e <sup>-</sup>                                                      | $\longrightarrow$ Cr(s)                                                     | -0.73  |                          |
|                             | $Zn^{2+}(aq) + 2 e^{-}$                                                                       | $\longrightarrow$ Zn(s)                                                     | -0.76  |                          |
|                             | 2 H <sub>2</sub> O( <i>I</i> ) + 2 e <sup>-</sup>                                             | $\longrightarrow$ H <sub>2</sub> (g) + 2 OH <sup>-</sup> (aq)               | -0.83  |                          |
|                             | Mn <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Mn(s)                                                     | -1.18  |                          |
|                             | Al <sup>3+</sup> (aq) + 3 e <sup>-</sup>                                                      | $\longrightarrow$ Al(s)                                                     | -1.66  |                          |
|                             | $Mg^{2+}(aq) + 2 e^{-}$                                                                       | $\longrightarrow$ Mg(s)                                                     | -2.37  |                          |
|                             | $Na^+(aq) + e^-$                                                                              | → Na(s)                                                                     | -2.71  |                          |
|                             | Ca <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Ca(s)                                                     | -2.76  |                          |
|                             | Ba <sup>2+</sup> (aq) + 2 e <sup>-</sup>                                                      | $\longrightarrow$ Ba(s)                                                     | -2.90  |                          |
| Weaker                      | $K^+(aq) + e^-$                                                                               | $\longrightarrow$ K(s)                                                      | -2.92  | Stronger                 |
| oxidizing agent             | Ц <sup>+</sup> (aq) + e <sup>-</sup>                                                          | $\longrightarrow$ Li(s)                                                     | -3.04  | reducing agent           |

| eduction Half-R            | Reaction                                           |                                                                                      | E°(V)  |                          |
|----------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|--------|--------------------------|
| 21                         | $F_2(g) + 2 e^-$                                   | → 2 F <sup>-</sup> (aq)                                                              | 2.87   |                          |
| Stronger<br>cidizing agent | $H_2O_2(aq) + 2 H^+(aq) + 2 e^-$                   | → 2 H <sub>2</sub> O(/)                                                              | 1.78   | Weaker<br>reducing agent |
|                            | $PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$     | $\longrightarrow$ PbSO <sub>4</sub> (s) + 2 H <sub>2</sub> O( <i>l</i> )             | 1.69   |                          |
|                            | $MnO_4^-(aq) + 4 H^+(aq) + 3 e^-$                  | $\longrightarrow$ MnO <sub>2</sub> (s) + 2 H <sub>2</sub> O( <i>l</i> )              | 1.68   |                          |
|                            | $MnO_4^{-}(aq) + 8 H^{+}(aq) + 5 e^{-}$            | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 4 H <sub>2</sub> O(I)                      | 1.51   |                          |
|                            | Au <sup>3+</sup> (aq) + 3 e <sup>-</sup>           | → Au(s)                                                                              | 1.50   |                          |
|                            | $PbO_2(s) + 4 H^+(aq) + 2 e^-$                     | $\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$                                            | 1.46   |                          |
|                            | Cl <sub>2</sub> (g) + 2 e <sup>-</sup>             | $\longrightarrow 2 CI^{-}(aq)$                                                       | 1.36   |                          |
|                            | $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$            | $\longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2O(I)$            | 1.33   |                          |
|                            | $O_2(g) + 4 H^+(aq) + 4 e^-$                       | $\longrightarrow 2 H_2O(l)$                                                          | 1.23   |                          |
|                            | $MnO_2(s) + 4 H^+(aq) + 2 e^-$                     | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 2 H <sub>2</sub> O(I)                      | 1.21   |                          |
|                            | $10_3^{-}(aq) + 6 \text{ H}^+(aq) + 5 \text{ e}^-$ | $\longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(l)$                                     | 1.20   |                          |
|                            | $Br_2(l) + 2 e^-$                                  | $\longrightarrow 2 \text{ Br}^{-}(aq)$                                               | 1.09   |                          |
|                            | $VO_2^+(aq) + 2 H^+(aq) + e^-$                     | $\longrightarrow VO^{2+}(aq) + H_2O(I)$                                              | 1.00   |                          |
|                            | $NO_3^-(aq) + 4 H^+(aq) + 3 e^-$                   | $\longrightarrow$ NO(g) + 2 H <sub>2</sub> O(I)                                      | 96.0   |                          |
|                            | $ClO_2(g) + e^-$                                   | $\longrightarrow$ ClO <sub>2</sub> <sup>-</sup> (aq)                                 | 0.95   |                          |
|                            | $Ag^+(aq) + e^-$                                   | → Ag(s)                                                                              | 08.0   |                          |
|                            | $Fe^{3+}(aq) + e^-$                                | $\longrightarrow$ Fe <sup>2+</sup> (aq)                                              | 0.77   |                          |
|                            | $0_2(g) + 2 H^+(aq) + 2 e^-$                       | $\longrightarrow$ H <sub>2</sub> O <sub>2</sub> (aq)                                 | 0.70   |                          |
|                            | $MnO_4^-(aq) + e^-$                                | $\longrightarrow$ MnO <sub>4</sub> <sup>2-</sup> (aq)                                | 0.56   |                          |
|                            | $l_2(s) + 2 e^-$                                   | → 2 I <sup>-</sup> (aq)                                                              | 0.54   |                          |
|                            | $Cu^+(aq) + e^-$                                   | → Cu(s)                                                                              | 0.52   |                          |
|                            | $0_2(g) + 2 H_2 O(l) + 4 e^-$                      | → 4 0H <sup>-</sup> (aq)                                                             | 0.40   |                          |
|                            | $Cu^{2+}(aq) + 2 e^{-}$                            | > Cu(s)                                                                              | 0.34   |                          |
|                            | $SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$                | $\longrightarrow$ H <sub>2</sub> SO <sub>3</sub> (aq) + H <sub>2</sub> O( <i>I</i> ) | 0.20   |                          |
|                            | $Cu^{2+}(aq) + e^{-}$                              | → Cu <sup>+</sup> (aq)                                                               | 0.16   |                          |
|                            | $Sn^{4+}(aq) + 2 e^{-}$                            | $\longrightarrow$ Sn <sup>2+</sup> (aq)                                              | 0.15   |                          |
|                            | 2 H <sup>+</sup> (aq) + 2 e <sup>-</sup>           | $\longrightarrow$ H <sub>2</sub> (g)                                                 | 0      |                          |
|                            | $Fe^{3+}(aq) + 3 e^{-}$                            | → Fe(s)                                                                              | -0.036 |                          |
|                            | $Pb^{2+}(aq) + 2 e^{-}$                            | → Pb(s)                                                                              | -0.13  |                          |
|                            | $Sn^{2+}(aq) + 2 e^{-}$                            | → Sn(s)                                                                              | -0.14  |                          |
|                            | Ni <sup>2+</sup> (aq) + 2 e <sup>-</sup>           | → Ni(s)                                                                              | -0.23  |                          |
|                            | $Cd^{2+}(aq) + 2 e^{-}$                            | → Cd(s)                                                                              | -0.40  |                          |
|                            | $Fe^{2+}(aq) + 2 e^{-}$                            | → Fe(s)                                                                              | -0.45  |                          |
|                            | $Cr^{3+}(aq) + e^{-}$                              | $\longrightarrow Cr^{2+}(aq)$                                                        | -0.50  |                          |
|                            | Cr <sup>3+</sup> ( <i>aq</i> ) + 3 e <sup>-</sup>  | → Cr(s)                                                                              | -0.73  |                          |
|                            | $Zn^{2+}(aq) + 2 e^{-}$                            | → Zn(s)                                                                              | -0.76  |                          |
|                            | 2 H <sub>2</sub> O( <i>I</i> ) + 2 e <sup>-</sup>  | $\longrightarrow$ H <sub>2</sub> (g) + 2 OH <sup>-</sup> (aq)                        | -0.83  |                          |
|                            | $Mn^{2+}(aq) + 2 e^-$                              | → Mn(s)                                                                              | -1.18  |                          |
|                            | Al <sup>3+</sup> (aq) + 3 e <sup>-</sup>           | → AI(s)                                                                              | -1.66  |                          |
|                            | $Mg^{2+}(aq) + 2 e^{-}$                            | → Mg(s)                                                                              | -2.37  |                          |
|                            | $Na^+(aq) + e^-$                                   | → Na(s)                                                                              | -2.71  |                          |
|                            | $Ca^{2+}(aq) + 2 e^{-}$                            | → Ca(s)                                                                              | -2.76  |                          |
|                            | $Ba^{2+}(aq) + 2 e^{-}$                            | → Ba(s)                                                                              | -2.90  | -                        |
| Weaker                     | $K^+(aq) + e^-$                                    | → K(s)                                                                               | -2.92  | Stronger                 |
| cidizing agent             | Li <sup>+</sup> (aq) + e <sup>-</sup>              | → Li(s)                                                                              | -3.04  | reducing agent           |

# Reduction Values Oxidation

### Flip the equations? NOW your values are Oxidation Values!


# More positive NOW means more likely to be oxidized!

### **BE CAREFUL!**

# **Reduction Table**

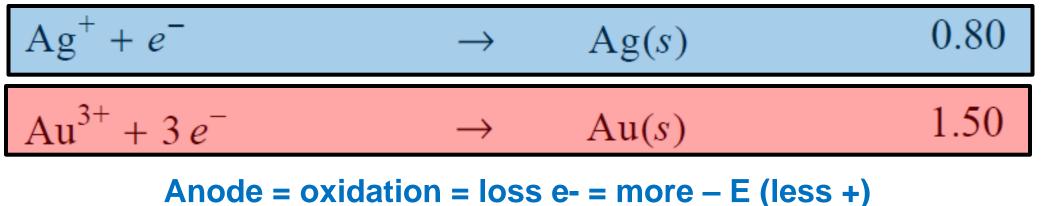
#### **Example:**

Which rxn is more likely to happen at the cathode and which at the anode??



Anode = oxidation = loss e- = more (-) E = less (+) Cathode = reduction = gain e- = more (+) E

# **Calculating Cell Potentials under Standard Conditions**


$$E^{\circ}_{cell} = E^{\circ}_{oxidation} + E^{\circ}_{reduction}$$

- When looking up values on reduction table, flip the sign for the one that is being oxidized because you have the opposite reaction taking place compared to what is written on the chart.
- When adding *E*° values for the half-cells, do not multiply the half-cell *E*° values, even if you need to multiply the half-reactions to balance the equation.

# **Calculating Cell Potential**

### **Example:**

What is the cell potential for a cell made with silver and gold?



Cathode = reduction = gain e- = more + E

 $Au^{3+} + 3e^{-} \rightarrow Au$  $Ag \rightarrow Ag^{+} + e^{-}$ 

- +1.50 V - 0.80 V
- Flipped sign for Ag half rxn b/c oxidized but did NOT multiply it by 3.

(+1.50) + (-0.80) = 0.70 V

## **Sneak Peak at Spontaneity...**

If E<sup>°</sup>cell = ( + ) then  $\triangle G^{\circ} = (-)$ So it is spontaneous!

If E<sup>°</sup>cell = ( – ) then  $\triangle G^{\circ}$  = ( + ) So it is NON-spontaneous! we will see why in a later lecture  $\odot$ 

## YouTube Link to Presentation

https://youtu.be/iqk4Li9toOQ